

DELight: a **Direct** search **Experiment** for **Light** dark matter with Superfluid Helium

Francesco Toschi DPG Spring Meeting, Dresden – 20.03.2023

www.kit.edu

Dark Matter

- No electromagnetic interaction \rightarrow **dark**;
- Evidences of gravitational nature \rightarrow **massive**;
- No particle candidate in $SM \rightarrow BSM$ physics;
- Direct searches for DM-nucleus scattering.

The Dark Matter landscape today

Technologies for LDM searches

- Cryogenic bolometers (e.g., SuperCDMS, CRESST)
- Migdal effect in dual-phase TPCs (e.g., XENONnT, LZ, DarkSide)
- Charge-Coupled Devices (e.g., SENSEI, DAMIC)
- Gaseous proportional counters (e.g., NEWS-G, DarkSphere)

Superfluid ⁴He (e.g., DELight, HeRALD) <u>arxiv:2209.10950</u> Phys. Rev. D 100, 092007 (2019)

. . .

Superfluid ⁴He as target

- Impurities freezing out (~20 mK)
- Multiple signals
- Unexpensive material and scalable technology

Light nuclei maximize recoil energy for LDM

- Quantum of collective excitation (phonon) as additional signal
- Quasiparticles propagate ballistically within the He target and are reflected at the interface with solid

■ Noise-free gain \geq 10 in deposited MMC Detector to Filmburner energy within the MMC detector as Superfluid Helium binding energy He-He is smaller at 20 mK He Atom He – Vacuum than He-absorber Interface **Recoil Event** ΛAЉ--<u>-----●-</u>→ MMC Detector 0.62 meV Photon 120105 Excimer oronon ~ 10 meV Superfluid **Detector Wafer** Vacuum Helium

Magnetic Micro-Calorimeters (MMCs)

- Energy deposit in an *absorber* leads to a temperature increase δT changing the magnetization of the *paramagnetic* sensor $\delta M \propto \delta T$
- Change in magnetization measured by a coupled SQUID as change in current $\delta I \propto \delta T$
- Measured resolution of 1.6 eV (@ 5.9 keV)

- First phase can already probe new parameter space with limited exposure:
 - 10 liters (~1 kg)
 - O(kg•d) exposure
 - 20 eV threshold
- Long term plan:
 - Up to 200 liters in UG lab
 - O(kg•yr) exposure
 - <10 eV threshold</p>

Back-up slides

Institute of Astroparticle Physics - IAP

Superfluid Helium as target

Signal partition

Phonon in superfluid Helium

Rotons \simeq high momentum phonons

HERON

MMCs performance

