The Direct search Experiment for Light Dark Matter (DELight): **Overview and Perspectives**

Eleanor Fascione on behalf of the DELight Collaboration DPG Göttingen 2025

The Current SI-DM Landscape and Push to Low Mass

E. Fascione, DPG Göttingen 31.04.2025

Various experimental efforts to reach sensitivity to ~GeV/c² scale WIMPs

Heavy noble experiments constrain high-mass WIMP parameter space and push towards neutrino fog

The DELight Collaboration

E. Fascione, DPG Göttingen 31.04.2025

universität freiburg

Superfluid Helium-4 Target

Light nucleus ideal for LDM search

Signals in Superfluid He-4

Signals in Superfluid He-4

DELight Detector - Interactions in Superfluid Helium-4

- Prompt signal from UV and IR photons
- Triplet excimer
 - Ballistic O(m/s) speed
 - ➡ 13s lifetime
 - Very delayed arrival time at sensors

DELight Detector - Interactions in Superfluid Helium-4

DELight Detector - Film Burner

- Must keep sensors free of He film to maintain amplification factor
- ➡ Implement a film burner

Magnetic MicroCalorimeters (MMCs)

R&D - MMC Energy Resolution

calibration peaks

$\Rightarrow \Delta E_{FWHM} = 1.25 \text{ eV} \text{ at } 5.9 \text{keV}$

Amplitude fit to Ka data

 \rightarrow Validated by reconstructing K_B

E. Fascione, DPG Göttingen 31.04.2025

➡New MMCs achieved best resolution to date with optimum-filter analysis of ⁵⁵Fe

Phys. Rev. D 109, 043035 (2024)

Possible DELight MMC Design

Large area MMC for full surface coverage - silicon or sapphire wafer

Potentially sub-eV resolution

E. Fascione, DPG Göttingen 31.04.2025

Paramagnetic sensor

Phonon collector

SQUID

Simulations

- Geant4 model of preliminary DELight geometry implemented
- Quasiparticle physics implemented
- Ongoing background modelling
- → Waveform simulations
- Fridge Cryostat Cell+film burner MMC

Vue-des-Alpes Underground Lab

Shallow underground lab in Switzerland, operated by University of Freiburg Hosts GeMSE gamma spectrometer for material assay

Reduced cosmic background with 230m rock overburden (620m.w.e)

Small Scale "DELight Demonstrator" for R&D

- ➡ MMC testing, athermal and thermal sensor characterization
- Direct quasiparticle measurements
- Background modelling
- Event reconstruction

To Conclude: The DELight Forecast

Thank you

Signal Formation in Superfluid Helium

- Developed a Monte Carlo-based approach to estimate signal partitioning
 - accepted by PRD, <u>arXiv:2410.13684</u>

Signal partitioning in superfluid 4He: a Monte Carlo approach, paper

GeMSE

- Low background HPGe crystal gamma spectrometer @ VdA
- Material selection campaign for experiment components

